Constrained generalised principal component analysis
نویسندگان
چکیده
Generalised Principal Component Analysis (GPCA) is a recently devised technique for fitting a multicomponent, piecewise-linear structure to data that has found strong utility in computer vision. Unlike other methods which intertwine the processes of estimating structure components and segmenting data points into clusters associated with putative components, GPCA estimates a multi-component structure with no recourse to data clustering. The standard GPCA algorithm searches for an estimate by minimising an appropriate misfit function. The underlying constraints on the model parameters are ignored. Here we promote a variant of GPCA that incorporates the parameter constraints and exploits constrained rather than unconstrained minimisation of the error function. The output of any GPCA algorithm hardly ever perfectly satisfies the parameter constraints. Our new version of GPCA greatly facilitates the final correction of the algorithm output to satisfy perfectly the constraints, making this step less prone to error in the presence of noise. The method is applied to the example problem of fitting a pair of lines to noisy image points, but has potential for use in more general multi-component structure fitting in computer vision.
منابع مشابه
Generalised Principal Component Analysis: Exploiting Inherent Parameter Constraints
Generalised Principal Component Analysis (GPCA) is a recently devised technique for fitting a multi-component, piecewise-linear structure to data that has found strong utility in computer vision. Unlike other methods which intertwine the processes of estimating structure components and segmenting data points into clusters associated with putative components, GPCA estimates a multicomponent stru...
متن کاملGeneralised Geometries, Constrained Critical Points and Ramond–Ramond Fields
We describe the geometry of type II string compactifications to 6– and 7–dimensional backgrounds with Ramond–Ramond–fields in terms of principal fibre bundle as generalised SU(3)– and G2– structures. We endow these structures with an integrability condition which can be characterised as a constrained critical point for the generalised Hitchin functional and provides a solution to the supersymme...
متن کاملGeneralised Scalable Robust Principal Component Analysis
The robust estimation of the low-dimensional subspace that spans the data from a set of high-dimensional, possibly corrupted by gross errors and outliers observations is fundamental in many computer vision problems. The state-of-the-art robust principal component analysis (PCA) methods adopt convex relaxations of `0 quasi-norm-regularised rank minimisation problems. That is, the nuclear norm an...
متن کاملEla Optimal Subspaces and Constrained Principal Component Analysis
The main result of this article allows formulas of analytic geometry to be elegantly unified, by readily providing parametric as well as cartesian systems of equations. These systems characterize affine subspaces in Rp passing through specified affine subspaces of lower dimension. The problem solved is closely related to constrained principal component analysis. A few interesting applications a...
متن کاملPrincipal component analysis or factor analysis different wording or methodological fault?
This article has no abstract.
متن کامل